Compact Hyperbolic 4-manifolds of Small Volume

نویسندگان

  • MARSTON CONDER
  • COLIN MACLACHLAN
چکیده

We prove the existence of a compact non-orientable hyperbolic 4-manifold of volume 32π2/3 and a compact orientable hyperbolic 4-manifold of volume 64π2/3, obtainable from torsion-free subgroups of small index in the Coxeter group [5, 3, 3, 3]. At the time of writing these are the smallest volumes of any known compact hyperbolic 4-manifolds.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperbolic Manifolds of Small Volume

We conjecture that for every dimension n 6=3 there exists a noncompact hyperbolic n-manifold whose volume is smaller than the volume of any compact hyperbolic n-manifold. For dimensions n≤ 4 and n = 6 this conjecture follows from the known results. In this paper we show that the conjecture is true for arithmetic hyperbolic n-manifolds of dimension n≥ 30. 2010 Mathematics Subject Classification:...

متن کامل

Minimum Volume Cusped Hyperbolic Three-manifolds

This corollary extends work of Cao and Meyerhoff who had earlier shown that m003 and m004 were the smallest volume cusped manifolds. Also, the above list agrees with the SnapPea census of one-cusped manifolds produced by Jeff Weeks ([W]), whose initial members are conjectured to be an accurate list of small-volume cupsed manifolds. Let N be a closed hyperbolic 3-manifold with simple closed geod...

متن کامل

Hyperbolic 3-manifolds as 2-fold Coverings According to Montesinos

The Fibonacci manifolds and the ten smallest known compact orientable three-dimensional hyperbolic manifolds are obtained as twofold coverings of the three-dimensional sphere. The corresponding branch sets are described. It is shown that every manifold under consideration admits a Heegaard splitting of genus two. In this paper we consider compact orientable hyperbolic three-dimensional manifold...

متن کامل

Dynamics of Asymptotically Hyperbolic Manifolds

We prove a dynamical wave trace formula for asymptotically hyperbolic (n+1) dimensional manifolds with negative (but not necessarily constant) sectional curvatures which equates the renormalized wave trace to the lengths of closed geodesics. This result generalizes the classical theorem of Duistermaat-Guillemin for compact manifolds and the results of GuillopéZworski, Perry, and Guillarmou-Naud...

متن کامل

Asymptotics of the Length Spectrum for Hyperbolic Manifolds of Infinite Volume

We compute the leading asymptotics of the counting function for closed geodesics on a convex co-compact hyperbolic manifold in terms of spectral data and scattering resonances for the Laplacian. Our result extends classical results of Selberg for compact and nite-volume surfaces to this class of in nite-volume hyperbolic manifolds.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005